
© EVOCEAN visualize collaborate automate 1 / 6
Innovating and improving systems and product development

IoT – A Software Developer‘s Perspective
Designing scalable architectures for reuse in Embedded Software Engineering

by Ian Macafee – Principle Consultant - EVOCEAN

The term IoT has become widely used in recent years. Google dictionary defines it as:

Internet of things - the interconnection via the Internet of computing devices embedded in
everyday objects, enabling them to send and receive data.

About the author

Ian Macafee has more than
25 years of experience in
software development,
support, consulting and UML
training. Since 2016 he is
working as a Principal
Consultant for EVOCEAN. His
specific interests include
behavioural modelling with
Rhapsody and distributed
architectures.

As a software developer I produce code that arguably receives and
sends data. So, what, if anything, do I need to change to satisfy the
IoT?
Perhaps you don’t see a need to change. The logic of your code is
the valuable part. How it receives and sends the data could be
regarded as someone else’s problem. At a concept level, this is true.
You shouldn’t have to change the logic of your functions but...
perhaps there are ways of making your implementation easier to
thingify. Perhaps there are techniques and tools that you are yet to
discover?

So, what do we mean by thingify?

To understand the IoT context, as developers, we need to
understand its mechanics. Given this understanding we can move
forward knowing why, we should, and, how to, adjust. The purpose
of this paper is to convey my observations of the past few years
whilst working in this rapidly growing distributed software
development world. I have witnessed how some companies find
their way whilst others lag. I have noticed how many of the lagging
companies have one thing in common. They have lots of useful IP
buried in existing systems but are struggling to know how best to
expose it to enable innovation. By breaking up systems into the
component parts, i.e. things, they can be wired together in new
ways. An organisation then has the possibility to discover new
capabilities and new products without having to implement the
details. Details take time and expertise. Wiring things is easy if I
have things I can wire!

I have helped to influence thinking in several organisations and
witnessed the injection of energy a new perspective can provide. I
wish to pass on these experiences to help others catch up and reap
the benefits both outside and within their organisations.

Mostly I am focused on helping to make software development fun,
simple and effective.

© EVOCEAN Consulting, Training and Tools 2 of 6

Thingification

I think of IoT as a set of runnable functions that communicate
through a distributed database. So, I regard a thing as a function
built as a single executable and accessible through a database.
From the point of view of its output this seems straight forward
enough, the function puts data into the database and anything
with access to that database can see the data.

I use the term database to refer to a set of tables that hold data
independent of the function that creates that data. The data may
or may not persist. If a function wishes the data to persist it would
specify the data as retained. The length of retention may be
dependent on factors such as the nature of the data and lifetime
of the function.

Writing to a distributed database is commonly referred to as
publishing.

Publishing
Take, for example, a thermostat. It can be regarded as a function.
It may have two attributes: the temperature that a user has
selected for activation purposes; and the actual temperature it is
sensing.

To organise the data in the database we
have tables. The tables contain rows of
data of the same type. In the example, our
type is Celsius. A published temperature
will be inserted into our table. But there
may be multiple things inserting
temperatures into our table. We need a
way of organising our database such that
we understand what each row of a table

represents. A key.
Rather than using the term key, each individual row in our
database is commonly referred to as a topic.

You should think of a topic in a similar way to a folder structure.
Topics can have hierarchy. If there is more than one thermostat in
our system, then we will want to uniquely identify each one. We
may have, for example, a thermostat in both the lounge and the
kitchen.

© EVOCEAN Consulting, Training and Tools 3 of 6

Kitchen/Thermostat/selected
Kitchen/Thermostat/actual
Lounge/Thermostat/selected
Lounge /Thermostat/actual

In this case our Celsius database table would have 4 rows, keyed as
seen here on the side:

A consistent topic naming scheme is as important as how we
would decompose our systems, organise our repositories and file
systems.

Subscribing
Publishing data into a database is a simple idea to understand.
However, the strategy for reacting to changes in data is an area
that needs more thought.

For us, as developers, to avoid coupling our functions
unnecessarily we simply provide methods, aka
operations|triggers|receptions, in our functions that may be called
by any user. Some carry parameters which we might consider as
data, others simply trigger functionality to run.

Here the SwitchOn/Off methods would not naturally be regarded
as data. Nevertheless, data ultimately triggers all methods. In
some cases, time is the data, in our example a change in selected
or actual could be used to SwitchOn our boiler.

If (actual < selected) then Boiler.SwitchOn()

The job of reacting to the change in thermostat attributes and
evaluating the condition is the responsibility of neither the boiler
nor the thermostat itself. In fact, it should not influence the design
of either. It is simply a wiring job to connect the output of one
thing to the input of another.

So, I am finally getting around to what our things should subscribe
to.

Put simply, a thing need only subscribe to the inputs defined by
the context of that thing.

To do this, it must subscribe to a topic that identifies it as the
owner.

© EVOCEAN Consulting, Training and Tools 4 of 6

In the case of our boiler, located in the garage, for example, those
topics would be:

Inputs/Garage/Boiler/switchOn
Inputs/Garage/Boiler/switchOff

Perhaps there is also a thermostat in the garage. The garage
system could subscribe to all its inputs via a single wildcard
subscription to:

Inputs/Garage/#

N.B. Similarly it is possible to subscribe to all thermostat data using
a level wildcard:

+/Thermostat/#

So, now we have two standalone software executables, boiler and
thermostat. Both can be implemented to subscribe to their inputs
and publish their outputs without knowledge of the systems in
which they are deployed.

To build our, somewhat artificial, system we need to:

1. Instantiate 1 boiler and 3 thermostats and uniquely
identify them

2. Wire them together with some additional logic to create
the desired system behaviour

Our boiler will need to SwitchOn if any thermostat
is showing (actual < selected) as true and this can
be built into our wiring logic

© EVOCEAN Consulting, Training and Tools 5 of 6

Rhapsody + TXF (Thing eXecution Framework)	
For many years, in fact more than 15, I have been using Rhapsody
to develop software. I find it especially useful because it provides
the ability to simplify complex behaviour by utilisation of state
charts. When communication between objects is required the OXF
(Object eXecution Framework) is perfectly suited to running an
application on a real-time operating system. The actual operating
system is abstracted through a layer known as the OSAL, Operating
System Abstraction Layer. This makes it possible to port an
application across different operating systems with minimum, if
any, rework.

In recent years I have required to develop larger and more
complex systems. These systems have had some aspect of
distribution across processors. On several occasions I have had to
use more than one programming language to produce my overall
system in the most efficient way.

All of this has meant I have experimented with different
approaches to inter-process communication. Shared memory, TCP,
pipes, UDP, serial comms to name but a few. Then I moved on to
middlewares. DDS (Data Distribution Service) was my first
experience. It worked for the specific problem being solved at the
time but had a steep learning curve and put restrictions on the
way I wanted to think about distributed applications. DDS’s means
of communication is based on the publish subscribe paradigm I
have suggested in this paper. It is a candidate for a suitable IoT
implementation and is used by many. However, I also discovered
MQTT. It is my current middleware of choice. MQTT puts fewer
constraints on the application that uses it.

Regardless, I am aware that, just as settling on a specific operating
system is often a mistake for progression of a business, settling on
a specific middleware is likely to result in a problem down the line
when something better comes along. However, I have settled on
the publish subscribe paradigm. I think it fits into real life. I like
things I can explain in terms that make sense to everyone. If I
speak (publish some data) you can choose to listen (subscribe) and
react in whatever way suits you.

 www.rhapsody.expert

© EVOCEAN Consulting, Training and Tools

EVOCEAN GmbH Grundstrasse 8 CH-6343 Rotkreuz www.evocean.com
EVOCEAN Austria GmbH Am Belvedere 8 A-1100 Wien info@evocean.com
EVOCEAN Deutschland GmbH Karlstrasse 35 D-80333 München @evocean_gmbh
EVOCEAN France SAS 19 Avenue d'Italie F-75013 Paris

©
 E

VO
CE

AN
-W

P
EV

O
-6

00
10

01
v2

I have therefore created a layer of software I call the Thing
eXecution Framework (TXF). Which is based on the publish
subscribe paradigm and has a Middleware Abstraction Layer built
into it.

By simply utilising a library and a set of stereotypes a competent
Rhapsody user can easily thingify his application using the TXF. He
can then build his executable to include the chosen middleware
adapter.

MQTT
As mentioned above MQTT would be my recommendation to
anyone thinking about how to move towards a standard protocol
for the IoT.

A simple google of MQTT opens an expanse of tools,
implementations, and knowledge.

Node-RED
Node-RED is a free tool for wiring together the internet of things,
licensed under the Apache Licence. Node-RED was originally
developed by IBM’s Emerging Technology Services team and is
now a part of the JS Foundation. It is a tool of simplicity that
provides endless opportunities.

It does not rely on MQTT but
supports it perfectly. It is a
tool of simplicity that

 http://mqtt.org/

https://nodered.org/

